Package index
-
track()
- Start tracking the dtrackr history graph
-
untrack()
- Remove tracking from the dataframe
-
pause()
- Pause tracking the data frame.
-
resume()
- Resume tracking the data frame.
-
print(<trackr_graph>)
- Print a history graph to the console
-
plot(<trackr_graph>)
- Plots a history graph as html
-
flowchart()
- Flowchart output
-
history()
- Get the dtrackr history graph
-
capture_exclusions()
- Start capturing exclusions on a tracked dataframe.
-
excluded()
- Get the dtrackr excluded data record
-
tagged()
- Retrieve tagged data in the history graph
Pipeline annotations
dtrackr
has functions that are specific additions to a data pipeline. These are novel data pipeline functions that don’t have a direct equivalent in dplyr
or tidyr
.
-
comment()
- Add a generic comment to the dtrackr history graph
-
status()
- Add a summary to the dtrackr history graph
-
count_subgroup()
- Add a subgroup count to the dtrackr history graph
-
exclude_all()
- Exclude all items matching one or more criteria
-
include_any()
- Include any items matching a criteria
S3 dplyr function extensions
S3 functions extend the behaviour of a subset of the dplyr
or tidyr
commands that operate on dataframes, and return dataframes, to include a history graph. In general these work the same as the normal dplyr
functions but allow additional parameters that allow us to configure how the history is captured as they are executed. dplyr
functions that are not listed here can still be used as normal with a tracked dataframe as input and give you the same output but simply do not give you the additional functionality to store a entry in the history graph. This may be because the operations are terminal such as count()
, tally()
, glimpse()
, pull()
, or they modify subsequent behaviour (e.g rowwise()
), or they do not output dataframes (e.g. group_map()
and group_walk()
). If a function is not supported in dtrackr
it can still be used, but that step of the pipeline will not be captured in the history graph.
-
add_count(<trackr_df>)
- dplyr modifying operations
-
add_tally()
- dplyr modifying operations
-
arrange(<trackr_df>)
- dplyr modifying operations
-
distinct(<trackr_df>)
- Distinct values of data
-
filter(<trackr_df>)
- Filtering data
-
group_by(<trackr_df>)
- Stratifying your analysis
-
group_modify(<trackr_df>)
- Group-wise modification of data and complex operations
-
mutate(<trackr_df>)
- dplyr modifying operations
-
relocate(<trackr_df>)
- dplyr modifying operations
-
rename(<trackr_df>)
- dplyr modifying operations
-
rename_with(<trackr_df>)
- dplyr modifying operations
-
select(<trackr_df>)
- dplyr modifying operations
-
summarise(<trackr_df>)
- Summarise a data set
-
reframe(<trackr_df>)
- Summarise a data set
-
transmute(<trackr_df>)
- dplyr modifying operations
-
ungroup(<trackr_df>)
- Remove a stratification from a data set
-
anti_join(<trackr_df>)
- Anti join
-
full_join(<trackr_df>)
- Full join
-
inner_join(<trackr_df>)
- Inner joins
-
left_join(<trackr_df>)
- Left join
-
right_join(<trackr_df>)
- Right join
-
semi_join(<trackr_df>)
- Semi join
-
nest_join(<trackr_df>)
- Nest join
-
slice(<trackr_df>)
- Slice operations
-
slice_head(<trackr_df>)
- Slice operations
-
slice_tail(<trackr_df>)
- Slice operations
-
slice_min(<trackr_df>)
- Slice operations
-
slice_max(<trackr_df>)
- Slice operations
-
slice_sample(<trackr_df>)
- Slice operations
-
bind_rows()
- Set operations
-
bind_cols()
- Set operations
-
intersect(<trackr_df>)
- Set operations
-
union(<trackr_df>)
- Set operations
-
union_all(<trackr_df>)
- Set operations
-
setdiff(<trackr_df>)
- Set operations
S3 function extensions in other packages
dtrackr
support for functions from other tidyverse packages is evolving. The focus is on functions that take a dataframe as input and produce a dataframe as output, and naturally fit within a data pipeline. pivot_longer()
and pivot_wider()
are good examples which are already implemented. Tracking of nest()
and unnest()
is not yet implemented (but this does not stop you from using these functions in a pipeline), and purrr
functions such as map_df()
, map_dfc()
, map_dfr()
, pmap()
, pmap_dfr()
, pmap_dfc()
are potential candidates for future implementation, as are functions that acquire data such as those from the readr
package.
-
pivot_longer(<trackr_df>)
- Reshaping data using
tidyr::pivot_longer
-
pivot_wider(<trackr_df>)
- Reshaping data using
tidyr::pivot_wider
Dot graph rendering.
Rendering of a dtrackr
history once converted to GraphViz
dot format. These can be also used for non-dtrackr dot content
-
dot2svg()
- Convert
Graphviz
dot content to a SVG
-
save_dot()
- Save DOT content to a file
-
std_size
- Standard paper sizes
Legacy interface
The following operations are all aliases for functions above. They are generally backend functions, and should not be used for new projects.
-
p_add_count()
- dplyr modifying operations
-
p_add_tally()
- dplyr modifying operations
-
p_anti_join()
- Anti join
-
p_arrange()
- dplyr modifying operations
-
p_bind_cols()
- Set operations
-
p_bind_rows()
- Set operations
-
p_capture_exclusions()
- Start capturing exclusions on a tracked dataframe.
-
p_clear()
- Clear the dtrackr history graph
-
p_comment()
- Add a generic comment to the dtrackr history graph
-
p_copy()
- Copy the dtrackr history graph from one dataframe to another
-
p_count_if()
- Simple count_if dplyr summary function
-
p_count_subgroup()
- Add a subgroup count to the dtrackr history graph
-
p_distinct()
- Distinct values of data
-
p_exclude_all()
- Exclude all items matching one or more criteria
-
p_excluded()
- Get the dtrackr excluded data record
-
p_filter()
- Filtering data
-
p_flowchart()
- Flowchart output
-
p_full_join()
- Full join
-
p_get()
- Get the dtrackr history graph
-
p_get_as_dot()
- DOT output
-
p_group_by()
- Stratifying your analysis
-
p_group_modify()
- Group-wise modification of data and complex operations
-
p_include_any()
- Include any items matching a criteria
-
p_inner_join()
- Inner joins
-
p_intersect()
- Set operations
-
p_left_join()
- Left join
-
p_mutate()
- dplyr modifying operations
-
p_nest_join()
- Nest join
-
p_pause()
- Pause tracking the data frame.
-
p_pivot_longer()
- Reshaping data using
tidyr::pivot_longer
-
p_pivot_wider()
- Reshaping data using
tidyr::pivot_wider
-
p_reframe()
- Summarise a data set
-
p_relocate()
- dplyr modifying operations
-
p_rename()
- dplyr modifying operations
-
p_rename_with()
- dplyr modifying operations
-
p_resume()
- Resume tracking the data frame.
-
p_right_join()
- Right join
-
p_select()
- dplyr modifying operations
-
p_semi_join()
- Semi join
-
p_set()
- Set the dtrackr history graph
-
p_setdiff()
- Set operations
-
p_slice()
- Slice operations
-
p_slice_head()
- Slice operations
-
p_slice_max()
- Slice operations
-
p_slice_min()
- Slice operations
-
p_slice_sample()
- Slice operations
-
p_slice_tail()
- Slice operations
-
p_status()
- Add a summary to the dtrackr history graph
-
p_summarise()
- Summarise a data set
-
p_tagged()
- Retrieve tagged data in the history graph
-
p_track()
- Start tracking the dtrackr history graph
-
p_transmute()
- dplyr modifying operations
-
p_ungroup()
- Remove a stratification from a data set
-
p_union()
- Set operations
-
p_union_all()
- Set operations
-
p_untrack()
- Remove tracking from the dataframe