Get the dtrackr excluded data record
excluded(.data, simplify = TRUE)
a dataframe which may be grouped
return a single summary dataframe of all exclusions.
a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default flattened, but if .simplify=FALSE
has a nested structure containing records excluded at each part of the pipeline.
library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(
Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"
) %>% excluded()
#> # A tibble: 17 × 9
#> .stage .strata .message Sepal.Length Sepal.Width Petal.Length Petal.Width
#> <chr> <chr> <glue> <chr> <chr> <chr> <chr>
#> 1 petal len… "" 13 long… 6.3 3.3 6 2.5
#> 2 petal len… "" 13 long… 7.1 3 5.9 2.1
#> 3 petal len… "" 13 long… 7.6 3 6.6 2.1
#> 4 petal len… "" 13 long… 7.3 2.9 6.3 1.8
#> 5 petal len… "" 13 long… 7.2 3.6 6.1 2.5
#> 6 petal len… "" 13 long… 7.7 3.8 6.7 2.2
#> 7 petal len… "" 13 long… 7.7 2.6 6.9 2.3
#> 8 petal len… "" 13 long… 7.7 2.8 6.7 2
#> 9 petal len… "" 13 long… 7.2 3.2 6 1.8
#> 10 petal len… "" 13 long… 7.4 2.8 6.1 1.9
#> 11 petal len… "" 13 long… 7.9 3.8 6.4 2
#> 12 petal len… "" 13 long… 7.7 3 6.1 2.3
#> 13 petal len… "" 13 long… 6.8 3.2 5.9 2.3
#> 14 petal len… "" 4 short… 4.3 3 1.1 0.1
#> 15 petal len… "" 4 short… 5.8 4 1.2 0.2
#> 16 petal len… "" 4 short… 4.6 3.6 1 0.2
#> 17 petal len… "" 4 short… 5 3.2 1.2 0.2
#> # ℹ 2 more variables: Species <chr>, .filter <chr>