Slice operations behave as in dplyr, except the history graph can be updated with
tracked dataframe with the before and after sizes of the dataframe.
See dplyr::slice()
, dplyr::slice_head()
, dplyr::slice_tail()
,
dplyr::slice_min()
, dplyr::slice_max()
, dplyr::slice_sample()
,
for more details on the underlying functions.
Usage
p_slice_tail(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"
)
Arguments
- .data
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details.
- ...
For
slice()
: <data-masking
> Integer row values.Provide either positive values to keep, or negative values to drop. The values provided must be either all positive or all negative. Indices beyond the number of rows in the input are silently ignored.
For
slice_*()
, these arguments are passed on to methods. Named arguments passed on todplyr::slice_tail
.by,by
-
<
tidy-select
> Optionally, a selection of columns to group by for just this operation, functioning as an alternative togroup_by()
. For details and examples, see ?dplyr_by. .preserve
Relevant when the
.data
input is grouped. If.preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting data, otherwise the grouping is kept as is.n,prop
Provide either
n
, the number of rows, orprop
, the proportion of rows to select. If neither are supplied,n = 1
will be used. Ifn
is greater than the number of rows in the group (orprop > 1
), the result will be silently truncated to the group size.prop
will be rounded towards zero to generate an integer number of rows.A negative value of
n
orprop
will be subtracted from the group size. For example,n = -2
with a group of 5 rows will select 5 - 2 = 3 rows;prop = -0.25
with 8 rows will select 8 * (1 - 0.25) = 6 rows.order_by
<
data-masking
> Variable or function of variables to order by. To order by multiple variables, wrap them in a data frame or tibble.with_ties
Should ties be kept together? The default,
TRUE
, may return more rows than you request. UseFALSE
to ignore ties, and return the firstn
rows.na_rm
Should missing values in
order_by
be removed from the result? IfFALSE
,NA
values are sorted to the end (like inarrange()
), so they will only be included if there are insufficient non-missing values to reachn
/prop
.weight_by
<
data-masking
> Sampling weights. This must evaluate to a vector of non-negative numbers the same length as the input. Weights are automatically standardised to sum to 1.replace
Should sampling be performed with (
TRUE
) or without (FALSE
, the default) replacement.
- .messages
a set of glue specs. The glue code can use any global variable, {.count.in}, {.count.out} for the input and output dataframes sizes respectively and {.excluded} for the difference
- .headline
a glue spec. The glue code can use any global variable, {.count.in}, {.count.out} for the input and output dataframes sizes respectively.
Examples
library(dplyr)
library(dtrackr)
# the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%
slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%
history()
#> dtrackr history:
#> number of flowchart steps: 3 (approx)
#> tags defined: <none>
#> items excluded so far: <not capturing exclusions>
#> last entry / entries:
#> ├ [Species:setosa]: "First 50%", "25 / 50"
#> ├ [Species:versicolor]: "First 50%", "25 / 50"
#> └ [Species:virginica]: "First 50%", "25 / 50"
# The last 100 items:
iris %>% track() %>% group_by(Species) %>%
slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%
history()
#> dtrackr history:
#> number of flowchart steps: 3 (approx)
#> tags defined: <none>
#> items excluded so far: <not capturing exclusions>
#> last entry / entries:
#> ├ [Species:setosa]: "Last 100", "50 / 50"
#> ├ [Species:versicolor]: "Last 100", "50 / 50"
#> └ [Species:virginica]: "Last 100", "50 / 50"