Mozilla MathML Test

Render this page with

	As rendered by TeX	As rendered by your browser
1	x^2y^2	x^2y^2
2	$_{2}F_{3}$	2 ^F 3
3	$\frac{x+y^2}{k+1}$	$\frac{x+y^2}{k+1}$
4	$x + y^{\frac{2}{k+1}}$	$x + y^{\frac{2}{k+1}}$
5	$\frac{a}{b/2}$	$\frac{a}{b/2}$
6	$ \begin{array}{r} $	$a_{0} + \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{a_{3} + \frac{1}{a_{4}}}}}$
7	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
8	$\binom{n}{k/2}$	$\binom{n}{k/2}$
9	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$
10	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$
11	x^{2y}	x ² y
12	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$

13		$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x^2}}}}}}$
	$\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x^2}}}}}}$	
14	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left \varphi(x+iy)\right ^2 = 0$	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \varphi(x + iy)^2 = 0$
15	$2^{2^{2^x}}$	2 ^{22^x}
16	$\int_{1}^{x} \frac{dt}{t}$	$\int_{1}^{x} \frac{dt}{t}$
17	$\iint_D dx dy$	∬ _D dxdy
18	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$	$f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$
19	$\overbrace{x+\cdots+x}^{k \text{ times}}$	$x + \dots + x$
20	y_{x^2}	<i>y</i> _{x²}
21	$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$	$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$
22	$\{\underbrace{a,\ldots,a}^{k\ a's},\underbrace{b,\ldots,b}_{k+l\ \text{elements}}\}$	$\{ a, \dots, a, b, \dots, b \}$ $k a's \qquad l b's \\ a, \dots, a, b, \dots, b \}$ $k+l \text{ elements}$
23	$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ & 0 & \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix}$	$\begin{pmatrix} (a & b) \\ (c & d) \\ (c & d) \end{pmatrix} \begin{pmatrix} e & f \\ g & h \\ 0 \\ (i & j) \\ k & l \end{pmatrix}$
24	$\det \begin{vmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ c_2 & c_3 & c_4 & \dots & c_{n+2} \\ \vdots & \vdots & \vdots & & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$	$det \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & c_3 & \dots & c_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n+1} & c_{n+2} & \dots & c_{2n} \end{pmatrix} > 0$
25	y_{x_2}	<i>y</i> _{x2}
26	$x_{92}^{31415} + \pi$	$x_{92}^{31415} + \pi$

27	$x_{y_b^a}^{z_c^d}$	$X^{z^c_c}_{y^a_b}$
28	$y_3^{\prime\prime\prime}$	<i>Y</i> ₃
29	$\lim_{n \to +\infty} \frac{\sqrt{2\pi n}}{n!} \left(\frac{n}{e}\right)^n = 1$	$\lim_{n \to +\infty} \frac{\sqrt{2\pi n}}{n!} \left(\frac{n}{e}\right)^n = 1$
30	$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i,\sigma_i}$	$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i,\sigma_i}$

This test is based on the original version from MDN.