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Abstract

Background: Hospital catchment areas define the primary population of a hospital and are central to

assessing the potential demand on that hospital, for example, due to infectious disease outbreaks.

Methods: We present a novel algorithm, based on label propagation, for estimating hospital catchment areas,

from the capacity of the hospital and demographics of the nearby population, and without requiring any data

on hospital activity.

Results: The algorithm is demonstrated to produce a mapping from fine grained geographic regions to larger

scale catchment areas, providing contiguous and realistic subdivisions of geographies relating to a single

hospital or to a group of hospitals. In validation against an alternative approach predicated on activity data

gathered during the COVID-19 outbreak in the UK, the label propagation algorithm is found to have a high
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level of agreement and perform at a similar level of accuracy.

Conclusions: The algorithm can be used to make estimates of hospital catchment areas in new situations

where activity data is not yet available, such as in the early stages of a infections disease outbreak.

Introduction

During the COVID-19 pandemic, the rapid assessment of the available capacity of a hospital and the potential

demand on its services has been important in identifying geographical areas where hospital services are at risk

of becoming overwhelmed. Along with epidemic dynamics, residual hospital capacity guides the imposition of

public health measures such as social distancing. When assessing the load on a hospital due to COVID-19

the demand may be unevenly distributed in space and rapidly changing in time. Available capacity may

be influenced by multiple factors, including staff availability. At the same time there may be fundamental

changes to health provision in the acute response of the pandemic, with for example the cancellation of

routine operations. In the early epidemic in the UK, for example, there was block booking of private health

care providers to assist the NHS (1), and the rapid creation of large scale field hospitals (2). In previous work

we examined the potential for redirecting patients from one region to another to balance the load of health

care provision (3) and we have observed this phenomenon as intensive care units reach capacity (4). When

we consider both the change in provision of services and the redistribution of patients, there is a potential

need to redefine the demographic and geographic profiles of health care service providers (“catchment areas”

and “catchment populations”) (5) to allow for effective planning.

The catchment area or population of a hospital is a broad concept which serves a number of purposes, such

as:

• Definition of the primary population of a hospital (and their demographics) for strategic planning

purposes (6).

• Definition of higher level organizational structures and collaborative networks (7).

• Identification of areas with under, or over provision of services

• Calculation (and visualisation) of incidence and prevalence of disease from hospital reported statistics

(identifying the denominator) (8) and hence admission rates per head of population.

• Preferred routing of patients to hospitals for optimizing specific services.

There are two general approaches to modelling catchment areas which we will discuss in detail - activity

based or algorithmic approaches. Algorithmic approaches are based solely on population level information
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about regional demographics and hospital capacity. Activity based approaches minimally require data on

hospital activity across all the region at an individual level, such as individual patient admission records.

Either of these individual modelling approaches result in a hospital catchment area that is either overlapping

or non-overlapping. An overlapping output may reflect the fact that patients may have a choice in the use of

the services, and that a range of individually varying predictors influence individuals’ capacity and willingness

to adhere to arbitrarily imposed boundaries. It may also reflect a fundamental organization of the service,

for example the networks of critical care (4), in which some activity of a hospital caters directly for the

local population, but other activity is conducted supporting other regional hospitals. As such overlapping

approaches may better reflect reality, but non-overlapping outputs are often a necessary simplification for

secondary analyses, where cross-classification is not specifiable (9). It is often desirable for secondary analysis

that boundaries align with geographical and organizational boundaries, but non-overlapping outputs may

result in real world cases being incorrectly assigned to a hospital based on the catchment area, and this will

tend to be spatially uneven, clustering at the fringes of the imposed boundaries (10).

The simplest algorithmic approaches involve straight line distance weighted to a measure of the size of a

hospital (11). This can be extended by models which use an analogy to gravity to calculate the potential

field of every hospital, based on both capacity (e.g. beds) and demand (e.g. patients) (11–13). The resulting

potentials may be cut off at a specified value, or where they are exceeded by another hospitals potential,

to produce either overlapping or non-overlapping fields. Such algorithmic approaches may not respect

geographical or existing organizational boundaries, but they can be used to model hypothetical scenarios,

such as the impact of creating a new hospital. Further details of the range of different models that have been

proposed have been previously published (5,8).

Activity based models began with the proportional flow, or Norris-Bailey, model (14,15) which examines the

proportion of patients from an area visiting a particular hospital versus the proportion of patients in an area

who visit any health care provider. An extension of this was recently used to define catchment areas for

major injury following acute trauma (16). More recently modern statistical approaches have been applied

to the same basic activity data including k-Means classification (8), Bayesian regression modelling. (6) or

Markov Multiscale Community Detection (7,17). Whilst arguably providing a more accurate reflection of

reality, activity based models are predicated on the availability and recency of activity data, which may

exhibit historical or cultural biases. Depending on the purpose of the catchment area such historical bias

may or may not be desirable (8).

Estimation of hospital catchment areas is a simplification of a complex logistical and organizational problem.

3



In England, for example, hospital sites are typically grouped into single organizational units (NHS trusts)

which report combined activity. Thus a single unit of health-care provision (NHS trust) may have a range of

physical locations, not all of which offer the full range of services. ICU provision is often focused in a single

hospital in an NHS Trust, whereas acute or step-down beds may be distributed across multiple sites. Some

specialist services, such as intensive care, also may be unevenly distributed, and larger units used as “tertiary

referral centres” which take in more complex patients from a wider geographical area.

In the early phase of the COVID-19 pandemic, a rapid estimate was needed of the potential demand on

intensive care services as a result of observed and forecast infections, in the context of a changing landscape

of health service provision. At this point, there was no comparable data with which to drive activity based

models, and volatile estimates of hospital capacity. In order to plan provision of additional ventilators and

high dependency beds, we needed a model of geographical catchment areas that could be used to translate

regional epidemiological models of infections into a prediction of future admissions to individual hospitals,

taking into account the regional demographics, and an estimate of the expected level of care the patients

would need. Such a catchment area model must interface with existing spatial boundaries implemented in

epidemiological models and publicly available demographic estimates, and fulfil the following criteria:

• Allow a clean one way mapping from fine grained geographic regions (e.g. from regional demographic

estimates or epidemiological models) to the coarse grained administrative hospital region.

• Provide contiguous and realistic subdivisions of geographies relating to a single hospital or to a hospital

group.

• Provide areas that are determined by the capacity of hospital at different levels of care provision, and

the density of local population, or anticipated size of outbreak in the local population.

• Create regions of approximately equal local supply (e.g. beds) and demand (e.g. patients) at boundaries.

• Respect crude physical geographical boundaries, such as large rivers.

• Flexible in that it can be recomputed rapidly if the background parameters change, for example, a

regional outbreak or provision of additional hospitals, in a way that is not dependant on individual

level activity data.

In this work we present a solution we developed for this problem, and introduce a novel algorithmic catchment

area model which is specifically designed to meet the needs of the COVID-19 pandemic as described above,

but is globallly applicable to the situation where we can quantify demand for a resource and a set of point

locations that supply that resource, and could be used, for example, in retail. This model is inspired by

label propagation techniques used for community detection in networks (18–20). The paper is presented as

follows; firstly we introduce the algorithm, secondly we describe some illustrative examples, and thirdly we
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qualitatively compare the output of the algorithm to both manually created organizational boundaries, and

to observed patient ICU admissions during the first wave of the COVID 19 pandemic.

Materials and Methods

This section consists of 3 parts: a detailed description of the algorithmic catchment area model, a description

of the data used to create initial outputs from the model, and a description of initial assessment of the model

against available data.

Algorithm

The algorithm is inspired by label propagation network clustering, where labels correspond to the supply of a

service, and the nodes in the network correspond to the demand for the service. For illustrative purposes

in this paper we will focus on the example of hospitals, where the “supply” is provision of hospital beds,

the “demand” is the population size, and the “network” is the neighbourhood of geographical areas under

consideration.

To connect supply and demand, or hospital beds to population size, the algorithm propagates a number of

labels, each representing the source of supply (e.g. the hospital), through the geographical network, at a rate

defined by both the size of the supply (e.g. beds in each hospital), and the demand for the service (e.g. the

population) within the areas the label has already propagated to. Thus as demand outstrips supply from a

particular source the rate of label propagation associated with that source decreases.

We assume the whole geographical region under consideration can be represented as a mathematical graph,

G and is divided into N smaller regions, represented by the vertices V (where V = Vn, n = 1, 2, . . . , N) each

with known population of size D(Vn).

We define M hospitals located at the geographical points P (where P = Pm,m = 1, 2, 3 . . .M), and with

capacity to supply S(Pm) beds. Typically there are fewer hospitals than regions (M << N). We constrain

Pm such that no more than one Pm is found within any given V , i.e. each small region hosts no more than one

hospital. In practice the assumption that a maximum of one hospital is found in each region is occasionally

not true. When this does happen, we preprocess the data to combine hospitals that are located together into

a single entity.

The connections of neighbouring regions of any area Vx are defined by Ex = ν(Vx), and likewise the set of
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neighbouring vertices of any subgraph Gy are defined by Ey = ν(Gy). These quantities are readily calculated

using the geographical intersection of different areas and various algorithms exist to calculate these from

geo-spatial data (21,22).

Figure 1: Schematic illustration of the proposed label propagation algorithm. The association of a hospital

with a region propagates from the hospital location (P) into the different regions (V) at a rate depending

on the hospital capacity S(P) and the population of the region, D(V), at each round of the iteration (k)

until there are no more neighbours to propagate a label to. The direction of spread is determined by the

geographical neighbourhood of each region V

Our goal is to divide the graph G into M labelled sub-graphs Gm such that the sub-graphs are connected,

and that neighbouring sub-graphs have similar bed availability per unit population (
∑

Sm∑
Dm

). We do this by

assigning a score for each combination of region and hospital, which is initially zero. For every iteration

of the algorithm this score is incremented in any unlabelled region that neighbours a region that has been

labelled (i.e. assigned to a specific hospital). The score is increased by a small amount determined by the

ratio of supply (hospital beds) available, and demand (population to be served) in the regions assigned to

that hospital. Thus labels propagate more quickly from points with a high capacity, through regions with a

low population density than vice-versa. The first label to propagate to a given area, and for which the score

is above a threshold is defined as the “supplier” for that area, which is labelled as such. This ensures that
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each region is served by only one hospital.

Algorithm 1: A weighted label propagation algorithm for matching geographical supply to demand
Input : VN - the N regions of demand as a set of geographical polygons
Input : D(Vn) - the density of demand in any given region as a function of the region Vn

Input : PM - a set of M labelled suppliers as a set of geographical points
Input : S(Pm) - the capacity of supply at any given supply point as a function of the supplier Pm

Input : Cgrowth - a rate constant defining rate of label propagation
Output: GM - M labelled subgraphs of graph G, relating to the catchment areas of suppliers PM

– define G as the graph consisting of geographical regions VN, connected by edges, EN,
given by their geographical neighbours ν(VN ):

EN ← ν(VN );
G← (VN , EN );
– define VM and V new

M,0 as the geographic regions of G serviced by points PM, and GM,0 as
a set of labelled sub-graphs (also initially consisting solely of the vertices VM):

VM ← G ∩ PM ;
V new

M,0 ← VM ; GM,0 ← VM ;
– define the initial unlabelled set of vertices:
U0 ← ¬VM ;
– define the initial un-labelled neighbours of labelled sub-graphs, GM:
UM,0 ← ν(VM );
– define an accumulated growth score for each un-labelled neighbour UM,0 of each GM,0:
AUM,0 ← 0;
k ← 0;
– execute the loop while there are still unlabelled vertices and there exist some
unlabelled neighbours of labelled vertices

while |Uk| > 0 and |UM,k| > 0 do
k ← k + 1;
– define the un-labelled vertices as the set of V not contained in any of GM,k−1:
Uk ← ¬GM,k−1;
– define the un-labelled neighbours of GM,k−1 as UM,k as the previously unlabelled

neighbours and the neighbours of the most recently labelled neighbours V new
M,k−1:

UM,k ← UM,k−1 ∪ (Uk ∩ ν(V new
M,k−1));

– define the reserve capacity, RM, to supply existing labelled, GM,k−1, and
un-labelled neighbours UM,k, as:

RM ← S(PM )
D(UM,k∪GM,k−1) ;

– for unlabelled areas only, update the accumulated growth score, AUM,k
, with the

normalised rank of the reserve capacity and multiplied by a constant Cgrowth > 1
representing the speed at which the accumulated growth score increases in all areas:

RM,k ← Rm{m ∈ UM,k};
AUM,k

← AUM,k−1 + Cgrowth × rank(RM,k)/|RM,k|;
– for all the un-labelled vertices, select the label M, with the highest score, and

if the accumulated score has reached the threshold of 1, incorporate it into the
labelled sub-graph, GM,k−1:

Amax
Uk

= max(AUm,k
,m ∈M);

V new
M,k ← UM,k ∈ {Amax

Uk
> 1};

GM,k ← GM,k−1 ∪ V new
M,k ;

UM,k+1 ← UM,k ∩ ¬V new
M,k ;

end
return GM,k
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Qualitative testing data

The algorithm requires firstly an estimate of demand, for this we used population counts, secondly a

geographical network and thirdly an estimate of supply, in this case hospital capacity data.

For the UK there are detailed estimates of the population at granular geographic detail (lower super output

area - LSOA) available from the Office of National Statistics (ONS) for England and Wales, and the National

Records Service (NRS) in Scotland (23,24). These population estimates are available by single year of age for

each area. These are combined to create a single figure for the adult population of each small geographic area.

Each geographical area is associated with a boundary file also provided by the ONS and NRS (25,26).

To estimate the capacity of hospitals we used a range of primary sources (described in the supplementary

materials) to manually compile a list of NHS and independent hospital sites. When not provided in the

primary sources, we identified their geographical locations from their postcode, and we estimated bed numbers

from both a combination of published NHS statistics and from daily COVID-19 situation reports from early

April 2020, provided by the NHS. The situation reports detailed both available beds at this point in time but

also gave an indication of maximum surge capacity for high dependency beds. These data were manually

curated and are indicative of the state of the NHS at maximal readiness. Bed state estimates for independent

hospital providers were also available through the situation reports.

In Northern Ireland, population estimates were not available at a similar geographical resolution as the ONS

and NRS sources, and we are unaware of any publicly available hospital capacity estimates. They were

therefore not included in this analysis.

The detail of the original data sources we used is presented in the supplementary material, not all of

which are publicly available. The algorithm is implemented as an R package arear (available from https:

//terminological.github.io/arear/), which also contains both the manually curated hospital capacity and data

pertaining derived demographics data described here.

Validation

There is no ground truth for the catchment areas for hospitals in the NHS during the COVID-19 pandemic.

The rationale for original development of this algorithm was to make an estimate in absence of any activity

data, in the early stages of the pandemic. Since then activity data has become available and this allows us to

validate the label propagation approach to the activity based approach.
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The activity based mapping takes the form of a many-to-many probabilistic mapping between lower tier local

authority districts (LTLA) and NHS Acute Trusts in England derived from Secondary Uses Service (SUS)

health-care data for England (27). We create equivalent probabilistic associations between the coarse grained

LTLA and NHS trusts by generating a fine grained lower super output area (LSOA) catchment area for NHS

trusts using the label propagation algorithm, and the demographic and bed capacity estimates described

above. This is aggregated to coarse grained local authority districts using mapping files provided by the ONS

(28), weighted by LSOA population size (23) (Source: Office for National Statistics licensed under the Open

Government Licence v.3.0). This equivalent mapping based on the label propagation algorithm is compared

to the activity based mapping graphically. The expected number of admissions to each NHS trust from each

LTLA, based on LTLA population size, and estimated using each method compared with the intra-class

correlation coefficient (29,30) using a mean-of-raters, absolute-agreement, two-way random-effects model(31),

as implemented in the R package irr(32).

Secondly we obtain the coarse location (partial UK postcode, also known as outcode) from a list of intensive

care patients admitted between 20th October 2000 and 16th March 2021 from the CHESS data set (33), which

is an anonymised patient level hospital admission data set. We use outcode boundary shapes (34), LSOA

demographic estimates, and an areal interpolation (35) to generate an estimate of demographics for each

outcode. Using this outcode based regional population estimate, outcode boundary shapes, and the manually

curated high dependency unit capacity estimates we calculate an outcode based catchment area estimate

from which we are able to predict the NHS trust each patient was admitted to based on their outcode, which

we compare to the observed NHS trust from the CHESS data. For this comparison we calculate both the

multinomial accuracy, and for each NHS trust, the one-versus-all binomial accuracy as follows:

accuracy = 1
|X|

∑
k∈G

∑
gobs(x)=k

I (gpred(x) = gobs(x))

where X is the set of observations, G is the set of NHS trusts, gpred and gobs are the predicted and observed

classes respectively and I is the indicator function which returns 1 if the predicted match observed and 0

otherwise.

For the activity based approach we assign each patient to a LTLA by virtue of the geographical location of

the centroid of their outcode shape and then determine the most probable NHS trust associated with that

LTLA. This forms a prediction of the NHS trust based on the patient’s outcode, which we can compare to

the observed NHS trust in the same manner as above.
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Results

Qualitative testing results

The results presented in this section qualitatively test the algorithm to determine whether it is producing

catchment area regions that are geographically contiguous, aligned with existing demographic boundaries,

respect coarse geographical boundaries such as large rivers. The catchment areas should also produce estimates

that minimise differences in the level of service provision from area to area, and we expect the overall regional

variation of supply versus demand to be locally smooth. Figure 2 shows a catchment area based on individual

hospitals that offered high dependency beds during April 2020, and a regional demand based on population

estimates of adults in lower super output areas. The resulting set of catchment areas presented in panel A

and C behave as desired in terms of the geographical properties. They also produce a fairly uniform density

of high dependency bed provision per capita population, from region to region, as seen in panel B. In areas

where there are high densities of hospitals such as London where the algorithm, by design, cannot propagate

from centrally located hospitals past more peripheral hospitals, leading to small numbers of areas with high

provision per head of population. This is discussed further below.

Figure 2: Panels A and C show a LSOA based catchment area map estimated from the high dependency bed

state in the UK in early April 2020, with catchment area boundaries shown in white. Red circles are NHS
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hospital sites with high dependency capacity. Map source: Office for National Statistics licensed under the

Open Government Licence v.3.0, Contains OS data © Crown copyright and database right 2020. Panel B

shows the distribution of high dependency beds per 100K population for each of the catchment areas defined

by the algorithm.

Further qualitative investigation of the properties of the algorithm are shown in Figure 3 where we see more

regional detail of the same algorithm applied this time to general hospital beds rather than high dependency

beds. Panel A shows the boundaries of the estimated catchment areas in white against the population density

of a small area of the South West of England containing three hospitals (Plymouth, Torbay and the Royal

Devon and Exeter hospitals). We can see in this example the extent of the catchment area to the South of

Torbay is defined by the Dart river estuary, thus respecting such geographical boundaries.

Figure 3 panel B shows details about the progression of the algorithm from one iteration to the next, as labels

propagate from each of the hospitals into the surrounding areas until encountering another catchment area.

As we expect from the design the algorithm is seen to spread from hospital sites quickly through areas of low

population density (panel A), such as the countryside surrounding Plymouth in the bottom left, and more

slowly through areas of higher population density such as the areas surrounding Torbay in the middle right.

Figure 3: Detail LSOA based catchment area map for NHS trusts estimated from the general hospital bed

states in the UK in early April 2020. Red circles are NHS hospital sites. In panel A the fill represents a
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relative measure of regional population density, with yellow areas being high density in and around cities. In

Panel B the same areas are shown but this time the fill shows the iteration number at which the algorithm

labelled a specific area, and the propagation of the algorithm by arrows. Map source: Office for National

Statistics licensed under the Open Government Licence v.3.0, Contains OS data © Crown copyright and

database right 2020

Validation

In comparing the label propagation mapping to the activity based mapping we see that the proportions of

any given LTLA that are assigned to any given trust are similar between the two methods (Figure 4, panel

A) with a clear trend to agreement. The major differences are seen in the extremes where, for example, in

the top left of panel A, the activity based approach may predict that no patients are observed in a given

hospital from a given LTLA, whereas the label propagation approach predicts the opposite. Panel B shows

the same relationship but this time scaled by the population size in each area, and this shows that the

impact of differences between predictions seen in panel A is in areas with smaller populations and is therefore

attenuated. Calculation of the intra-class correlation coefficient between the predicted number of cases from

each method gives excellent agreement between the two methods, with a value of 0.94 (95% CI: 0.93 – 0.95)

using a mean-of-raters, absolute-agreement, two-way random-effects model(31).

Figure 4: Classification agreement between activity based approach and label propagation algorithm. Each

point is a unique combination of lower tier local authority and NHS trust and in panel A the proportion

of the LTLA assigned to that trust is plotted for the activity based algorithm on the x-axis and the label
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propagation algorithm on the y-axis. In panel B the total number of cases assigned to each trust is plotted

when the population size for the area is considered. The blue line represents perfect agreement.

In Figure 5 we compare observed admissions to ITU to predictions made by the label propagation algorithm

and the activity based approach. As there are 178 trusts under consideration which form a large number

of distractors for each prediction, a low value for the multinomial accuracy could be expected. The overall

accuracy of both methods is comparable at 72.6%—72.4%. The distribution of the binomial one-versus-all

accuracy in the histogram shows that the prediction performance is better for some trusts than others, and

that the accuracy of the activity based approach has greater variability than that of the label propagation

approach. Across the whole country exact agreement between the observed location of hospital admission

and the predicted location of hospital admission based on the label propagation catchment area was seen in

12534 out of 17274 cases, and the Matthew’s correlation coefficient was 0.72.

Figure 5: Accuracy measures for the predictions of activity based and label propagation approaches based on

UK postcode outcodes, and a subset of observed NHS trust of intensive care admissions in England between

20th October 2000 and 16th March 2021. The histogram shows the distribution of the balanced accuracy for

each NHS trust in a one-vs-all binomial evaluation, and the inset table shows the overall accuracy from the

multinomial evaluation, along with the raw counts af overall evaluations and correct predictions for each

method

In Table 1 we qualitatively examine the ten NHS Trusts that have the highest number of ITU patients

that the label propagation algorithm predicted to be admitted elsewhere, and mis-classified them. These

represent 1833 (38.7%) of the total mis-classifications. The majority of these 10 hospitals are major tertiary
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referral intensive care units, or specialist centres, as demonstrated by them being in the top 10 centile of

NHS trusts by ITU bed capacity. This result is consistent with both the possibilities that severely ill patients

may end up in specialist centres rather than their closest hospital for treatment, or that in the event of a

large surge in cases, patients may overflow from smaller to larger intensive care units. Both of these could

lead to mis-classification of these patients by the label propagation algorithm, as we see here.

Table 1: The NHS trusts with the ten most misclassified covid ITU cases as assigned by the label propagation

algorithm

Discussion

We have presented an algorithm for rapidly estimating hospital catchment areas for use when activity data is

not available. We demonstrate how the output responds to the different capacities of the different levels of

care provided (e.g. high dependency versus general hospital beds). We present catchment areas calculated

using population size as demand, and total hospital beds as supply. This algorithm may be useful for longer

term strategic planning, but was conceptualized as part of an acute response to COVID-19 outbreak. In this

case we can use the different parameters for demand, for example local COVID-19 infection prevalence, and

different parameters for supply, for example availability to staffed hospital beds. Our approach is novel in

that it allows adaptation of local service provision to predictions of disease prevalence from epidemiological

models of COVID-19 and real time bed states provided by NHS trusts. This allows us to model the degree

of elasticity in the system to absorb localised shocks, caused by regional outbreaks, it helps us to develop

a better concept of when services are being at risk of becoming overwhelmed, and allow routing of new

admissions away from overloaded hospitals.

Benchmarking our algorithm against activity based approaches produced good to excellent agreement and
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application to both methods to real world patient admission data produces a very similar result. The finding

that naive application of our algorithm to real world patient admission classifies only 72.6% correctly is

explained by two things, firstly accuracy at boundaries decreases as the number of boundaries increases (10)

and secondly the fact that many of the top 10 mis-classified trusts are major tertiary referral centres, which

may take patients from distant regions for specialist care. This suggests that our constraint that catchment

areas should be non overlapping is not borne out in reality for these cases.

Overlapping catchment areas could be modeled by multiple layers of non-overlapping catchment areas. When

we consider the provision of intensive care services in the UK during COVID-19, we propose there are at

least 3 layers of hospital service provision: there is a local service, which provides care for patients from

nearby. A subset of hospitals additionally provide a regional, or tertiary referral, service layer which takes

sicker patients from neighbouring hospitals in larger areas. The final layer is a crisis overflow layer provided

by the NHS Nightingale field hospitals (2). Each of these layers may be considered to have somewhat

independent catchment areas. We propose that dividing the larger hospitals into local and regional services

and considering the tertiary referral network as a second layer, with its own larger catchment area would

improve the performance of the algorithm against real activity data. In such a layered model of catchment

areas there is interplay between local layer demand for hospital beds and capacity for regional tertiary care

provision, which will dynamically affect the “catchment area” for regional tertiary care provision, potentially

on a day to day basis. In previous work we looked at the opportunities for balancing the load between different

hospitals (3) when transferring COVID-19 patients away from overloaded areas, however moving unwell

patients between hospitals is ideally minimized. With this algorithm we enable the dynamic re-specification

of local service catchment areas and hospital tertiary referral networks, based on evolving demand. Coupled

with flexible load sharing has interesting potential to model or influence patient admissions around the whole

hospital network.

Hospital capacity is difficult to accurately estimate. During this work we encountered many of the uncertainties

that influence capacity. The ability of a hospital to provide a bed to a patient depends on a multitude of

factors, including staff availability, which may vary during the different stages of the pandemic. The ability

of hospitals to absorb large numbers of emergency patients by re-configuring their service provision (e.g

canceling routine operations) and providing overflow or “surge” high dependency capacity for short periods

of time makes putting a single number on hospital capacity difficult. The ability to recalculate catchment

areas based on changing assumptions around capacity is a strength of our approach, and in the future could

be used to analyse the impact of introducing new capacity into the hospital system. One further limitation

to note is that the algorithm does not consider travel time between regions which may increase both as the
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geographical size increases but also as the population density increases due to traffic and form a barrier to

patients accessing services. Adding a travel time penalty to the rate of label spread into the model is possible

given some estimate of the ease of transport within and between regions, and this is an area of future work.

There are opportunities to extend our algorithm. The general approach of label propagation in networks has

been more widely studied and newer approaches described (19,36,37) which allow overlapping communities.

This may address some of the issues described above. These are appealing and a possible avenue for future

extension of the algorithm. There persists however an open question about whether the overlapping nature of

hospital service provision observed in activity data is not really a reflection of patient choice, but actually

the result of subtly different services, or different levels of service, being provided by different hospitals to

different catchment areas. Thus a specialist cancer hospital close to a specialist paediatric hospital will have

geographically overlapping catchment areas, but in reality these hospitals are not providing the same service

to the same population. This line of argument suggests that the concept of a single overlapping hospital

catchment area is also an over-simplificiation, and when we take into account the heterogeneity of different

services offered by a hospital, we propose that a hospital’s overall catchment area may be well modeled by a

collection of non-overlapping catchment layers.

Conclusions

This label propagation algorithm for estimating hospital catchment areas is a pragmatic solution to determining

geographical and demographic subsets of the population when there is no previous activity data available. It

suits situations where the level of service provision and demand on the hospital system is dynamic, as has

been the case in the COVID-19 pandemic. The algorithm is simple and satisfies the major criteria we set out

in the introduction, in that it provides a mapping from low level geographic regions which provide contiguous

and realistic subdivisions of geographies relating to a single hospital or to a group of hospitals. The areas are

determined by the capacity of the hospital and the density of local population, and are approximately equal

in terms of local supply (e.g. beds) and demand (e.g. patients) at boundaries.

The algorithm depends solely on data reflecting supply and geographical demand for a service, and as such

is quite generic and potentially more widely applicable outside of healthcare. Although we have discussed

catchment areas in terms of the capacity of hospital beds, and demand of local populations, there is nothing to

prevent us defining capacity in any other way - a heuristic on staffing levels may be appropriate, or in different

contexts, availability of medical imaging devices. Likewise, demand may be refined to reflect sub-populations

at risk of disease, or may even be the output of a predictive model. As such our approach is applicable to a
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wide variety of problems.
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Supplementary material - Estimating surge hospital capacity in

Britain during the COVID-19 pandemic

Identifying a set of capacity data for the NHS proved complex. After several attempts to integrate data

from various sources, we ultimately performed a manual curation of the sources listed below, with gaps or

inconsistencies filled in by consultation with the relevant hospital’s website. The resulting list is a snapshot in

time of capacity and not representative of up to date practice. During the course of the COVID-19 pandemic

a small number of NHS trusts merged which had to be manually adjusted for. There are also significant

limitations due to the different ways the devolved administrations of the UK (England, Wales, Scotland and

Northern Ireland) reported situation report of bed capacity during the pandemic, which meant only England

and Wales hospitals has assessments of surge capacity, and we had no reliable information about Northern

Ireland at all, and hence it was excluded. This does not significantly alter our conclusions here about the

nature of the algorithm, but should be borne in mind, if the data set is to be used for other purposes.

NHS and Trust GIS locations (England):

• https://www.nhs.uk/about-us/nhs-website-datasets/

• Lists of independent and NHS hospitals and trusts with location data

• public

NHS Trusts (England)

• https://www.nhs.uk/ServiceDirectories/Pages/NHSTrustListing.aspx

• Lists of NHS trusts and locations (as postcode) with information about services offered and hospital

sites

• public

Beds open - NHS England:

• https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-

data-overnight/

• https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-

data-day-only/

• Information at an NHS trusts level on hospital beds and icu beds available

• public

Critical care capacity in England (pre-pandemic):
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• https://www.england.nhs.uk/statistics/statistical-work-areas/critical-care-capacity/critical-care-bed-

capacity-and-urgent-operations-cancelled-2019-20-data/

• Prepandemic NHS trust bed and ICU capacity

• public

Wales:

Average daily beds by site:

• https://statswales.gov.wales/v/Hg4K

• Prepandemic ICU and general bed availability

• public

Scotland:

Annual trends in available beds:

• https://www.isdscotland.org/Health-Topics/Hospital-Care/Publications/data-tables2017.asp?id=

2494#2494

• Prepandemic Hospital and ICU bed capacity

• public

Sitrep (Situation reports) data:

England:

• filename: Covid sitrep report incl CIC 20200408 FINAL.xlsx

• Acute and ICU beds available in England at site level

• ICU (SIT032) and HDU (SIT033) beds available - many data quality issues and missing trusts

• restricted

Wales:

• filename: NHSWalesCovid19Sitrep-20200408.csv

• Acute and ICU beds available in Wales

• restricted

N.B. No sitrep data for Scotland or for Northern Ireland
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